产品目录
液体涡轮流量计
液体流量计
水流量计
油流量计
气体涡轮流量计
椭圆齿轮流量计
电磁流量计
涡街流量计
蒸汽流量计
孔板流量计
旋进旋涡流量计
热式气体质量流量计
转子流量计
浮子流量计
靶式流量计
气体流量计
超声波流量计
磁翻板液位计
浮子液位计
浮球液位计
玻璃管液位计
雷达液位计
超声波液位计
投入式液位计
压力变送器
差压变送器
液位变送器
温度变送器
热电偶
热电阻
双金属温度计
推荐产品
联系我们
- 金湖凯铭仪表有限公司
- 联系电话:15195518515
- 在线客服:1464856260
- 电话:0517-86801009
- 传真号码:0517-86801007
- 邮箱:1464856260@qq.com
- 网址:http://www.bubu8.com
- 地址:江苏省金湖县理士大道61号
基于C8051F020单片机与HART总线的涡轮流量计
发布时间:2020-08-29 09:01:04 点击次数:2354次
摘要:设计了一种新型的基于C8051F020与HART总线的液体涡轮流量计,对硬件上的测量模块、HART模块、脉冲输出模块与软件上的主函数、脉冲测量与输出的流程图作了详细分析,并在柴油标准装置上进行了检定。检定结果证明,该设计是可行的,大大提高了流量脉冲采集与脉冲输出的精度与可靠性,同时,HART通信正常、可靠性高。
智能涡轮流量计精度高、重复性好、测量范围广、结构紧凑,但工业现场的环境比较恶劣,干扰严重,并且存在断电的危险,而国内现有的大量智能流量计的控制电路采用的是传统的C51系列单片机,由于传统C51单片机本身的局限,导致电路设计上需要扩充大量的功能芯片,使抗干扰能力下降,影响了测量精度;另一方面传统C51单片机本身工作时的电流高达10~20mA/每秒百万条指令,需要外接电源供电,不适合工作在一些对可靠性要求比较高的场合, 再加上计算能力有限,导致现场总线通信时可靠性差。而国外现有的智能流量计精度与可靠性高,可价格非常昂贵。因此,为满足国内市场对高精度与高可靠性、低价格涡轮流量计的需求,利用C8051F020设计了的一种新型液体涡轮流量计,硬件上主要由核心控制器件C8051F020、测量模块、HART通信模块、脉冲输出模块、铁电存储模块、显示与键盘处理模块构成,软件上主要有主函数、脉冲测量与输出的流程图,并在柴油标准装置上对该设计进行了检定验证。
1、硬件设计
采用总线供电,即流量计仪表表头的工作电流要从4~20mA的总线上截取;仪表表头的工作电流必须小于4mA,否则仪表的零点输出就无法调整。流量计仪表表头的设计难点之一在于功耗问题,解决这一问题的方法是表头用2个隔离电源供电,2个电源在4~20mA的总线上串联工作,把1个4mA变成2个4mA,这样既解决了功耗问题,也提高了流量计的工作稳定性。难点之二是流量计仪表表头HART通讯信号的稳定性和可靠性问题。要解决这一问题,*先,在功耗允许的情况下提高MCU的运行速度,有效利用MCU的资源提高软件
的运行效率。因此,MCU选用C8051F020,它具有高速流水线结构的8051兼容的CIP-51内核,在同等条件下,C8051F020的运行速度比C51的运行速度快20倍;而且,C8051F020有可同时使用的SM-Bus(I2CTM兼容)、SPITM及2个UART串口,这样,C8051F020的串行外设接口SPI(serial peripheral in-terface,SPI)与外设交换数据能大大减少软件开销,提高了MCU的工作效率。其次是,采用HART成熟的通讯滤波电路,它的稳定性、可靠性和抗干扰能力能得到保证。这种解决难点的思路对同类仪表的设计具有指导意义。C8051F020还内含可编程增益、可编程转换速率的12位快速A/D,还有64KByte Flash存储器,4352(4K+256)Byte RAM,可编程的16位计数器/定时器阵列,有5个捕捉/比较模块,片内JTAG调试和边界扫描,片内资源丰富。C8051F020的工作电压范围为2.7~3.6V,多种节电和停机模式,系统功耗低。
的运行效率。因此,MCU选用C8051F020,它具有高速流水线结构的8051兼容的CIP-51内核,在同等条件下,C8051F020的运行速度比C51的运行速度快20倍;而且,C8051F020有可同时使用的SM-Bus(I2CTM兼容)、SPITM及2个UART串口,这样,C8051F020的串行外设接口SPI(serial peripheral in-terface,SPI)与外设交换数据能大大减少软件开销,提高了MCU的工作效率。其次是,采用HART成熟的通讯滤波电路,它的稳定性、可靠性和抗干扰能力能得到保证。这种解决难点的思路对同类仪表的设计具有指导意义。C8051F020还内含可编程增益、可编程转换速率的12位快速A/D,还有64KByte Flash存储器,4352(4K+256)Byte RAM,可编程的16位计数器/定时器阵列,有5个捕捉/比较模块,片内JTAG调试和边界扫描,片内资源丰富。C8051F020的工作电压范围为2.7~3.6V,多种节电和停机模式,系统功耗低。
涡轮流量计表头主要包括核心控制器件C8051F020、流量脉冲信号采集模块、HART模块、脉冲输出模块、累计流量存储模块、显示与键盘处理模块,硬件总体框图如图1所示。
1.1流量脉冲信号采集
液体流过重庆耐德工业股份有限公司自制的涡轮流量传感器产生脉冲信号,经过信号调理电路的放大整形后,送到MCU的高优先级计数器T0口。T0设置为脉冲下降沿计数方式,对流量脉冲信号计数。用16位定时器T3设定查询周期,查询周期到就响应中断,在T3中断内取出T0的计数值,从而计算出瞬时流量、单次累计流量和总累计流量。
1.2HART模块
HART协议通信模块主要由HART调制解调器HT2012和D/A转换器AD421及其外围电路实现。HART MODEM采用Smar公司的HT2012,是符合Bell202标准的半双工调制解调器,实现HART协议规定的数字通信的编码或译码。该芯片专为HART仪器设计,片内集成了符合Bell202标准的调制器、解调器、时钟及定时电路、检测控制电路,性价比较高。其中AD421通过串行接口接收现场仪表内部MCU传送的数字信号,转换成4~20mA电流输出,输出主要的测量结果。HT2012则从VIN-节点接收叠加在4~20mA环路上的信号,对其带通滤波和放大之后进行载波检测,如果检测到FSK频移键控信号,则将IRXA节点上的 1.2kHz的信号解调为‘1’,将IRXA节点上的2.2kHz信号解调为‘0 ’,并通过串口通信RXD0节点传输给C8051F020,C8051F020接收命令帧并作相应的数据处理。之后,C8051F020产生要发回的应答帧,应答帧的数字信号由HT2012调制成相应的1.2kHz和2.2kHz的频移键控(FSK)信号,即节点TXD0到节点OTXA的调制过程,并经过发送信号整形电路进行波形整形后,经AD421叠加在环路上发送。C8051F020外接1.8432MHz晶振,4分频后作为HART调制解调的时钟信号源,电路图如图2所示。
1.3脉冲输出模块
脉冲输出模块主要由高速光耦隔离器、稳压电路构成。脉冲输出是采用控制 P1.4口的高低电平翻转来实现的。考虑到仪表安全性,流量计的脉冲输出模块均需要隔离保护。选用功耗低的高速CMOS信号隔离器,一端由AD421的输出电压VCC 3V供电,另一端由用户供电。用户通常提供DC 12V或DC 24V电源,所以采用稳压管Z1稳压5V给光耦另一端供电,如图3所示,其中VW+,VW-为用户提供的外接DC 12V或DC 24V电源输入端,Q1,Q2为三*管。脉冲输出时,当P1.4为高电平,POUT为高电平,Q1导通,Q2截止,节点PLUSEO输出高电平;当P1.4为低电平,POUT为低电平,Q1截止,Q2导通,节点PLUSEO输出低电平。
1.4累计流量存储
为了存储累计流量、各个流量段的流量系数、脉冲输出当量系数和流量量程等重要数据,外扩了一个铁电存储器FM24CL16。FM24CL16的工作方式是I2C总线,与C8051F020硬件上SMBus是兼容的。
1.5显示与键盘处理模块
显示采用长沙太阳人有限公司的SMS2807液晶,*1行显示10位数的总累积流量,*2行显示6位数的单次累积流量与3位数的液体温度,*3行显示5位数的瞬时流量。显示模块还用于在键盘设置时的各项提示。键盘采用4按键直接与单片机的P3口连接,采用查询方式。当查询到有键按下,则执行相应功能。键盘设置主要用于各个流量段的流量系数、脉冲输出当量、流量量程的设置与查看。
2、软件设计
采用Keil uVision3作为测量系统软件的开发平台,采用C语言编程。单片机上电后,先执行初始化,加载HART协议并开中断,等待上位机HART帧到达,读取铁电存储器的数据,如果有按键,则执行键盘操作; 如果没有按键,则定时刷新总累积流量、瞬时流量、单次累计流量、温度的显示。定时查询流量值、脉冲输出和HART串口通信都由中断触发。脉冲输出时I/O口电平的翻转与延迟由PCA定时器来软件定时实现。中断程序在整个系统的软件设计中较为关键,在设计中应注意2个问题:
1)定时器T3中断内提取计数器T0的流量脉冲信号的计数值,计算各流量参数并配置脉冲输出,在程序编写时应尽量简洁;
2)PCA定时器的中断要设置为高优先级。
HART通信协议采用问答式,即上位机(主机)向下位机发出命令,下位机(从机)回答。主机消息到来时,通过触发串口中断来接收和发送数据。主循环程序还包括检测温度并送LCD显示的子程序模块,4~20mA电流输出子程序模块,累计流量写铁电子程序模块等。系统主函数流程图如图4所示,脉冲采集、脉冲输出流程图如图5所示。
3、检定结果
根据涡轮流量传感器的工作特性曲线,将流量测量范围0~160m3/h平均分为5段,每一段选取一个检定点,每个检定点测试3次,分段修正仪表系数,用累计流量计算示值误差,在耐德流量实验室的基于标准法柴油标准装置上进行了检定测试。由于检定装置的误差不超出被检流量计的基本误差限的1/3就可忽略不计,故流量计基本误差近似等于流量计示值误差。使用累积流量计算示值误差(基本误差)的方法为
(1)式中:Eij为*i个检定点*j次检定被检流量计的示值误差百分数;Vij 为*i个检定点*j次检定时流量计显示的累计流量值,单位为m3或L;(Vs)ij为*i个检定点*j次检定时标准装置测得的累计流量值,单位为m3或L。
重复性误差是根据基本误差的测定结果,依(2)-(3)式按检定点分别进行计算
(2)-(3)式中:Ei为*i个检定点n次检定的平均误差;Eimax为*i个检定点n次检定基本误差中的*大值;Eimin为*i个检定点n次检定基本误差中的*小值;(Er)i为*i检定点累积流量重复性误差;dn为*差法系数,n=3时按检定规则取为1.69。
以LW-81为例,检定实验数据如表1所示。
测试结果表明,累积流量基本误差限小于0.2%,重复性小于0.06%,重复性与基本误差满足0.2级的较高精度要求,证明对脉冲测量与脉冲输出都具有较高的精度和可靠性。此外,还采用上位机软件与流量计HART通信来修改仪表系数,证明了HART通信的正常可靠。
4、结束语
本文给出了一种基于C8051F020单片机与HART总线的涡轮流量计的设计,硬件上采用C8051F020作为核心控制器件,采用高优先级的计数器来采集脉冲,采用IO口电平翻转来输出脉冲,采用HT2012及附属电路来实现HART通信;软件上采用定时查询计数器来刷新各流量参数,HART通信采用问答式,脉冲输出采用对可编程定时器阵列的控制来实现。*后,在柴油标准装置上进行了检定验证。结果表明,该流量计采用C8051F020为核心控制器件,使整个系统结构更加简洁可靠,大大提高了液体流量测量与脉冲输出的精度和可靠性;同时,HART通信正常可靠,便与上位机构成主从分布式网络。
相关资讯
- 气体涡轮流量计安装直管段要求
- 气体涡轮流量计的结构与工作原理
- 气体涡轮流量计的产品特点和适用范围
- 气体涡轮流量计选型指南与外形尺寸
- 涡轮流量计的常见故障及排除
- 涡轮流量表怎么调节
- 涡轮流量计安装直管段要求
- 涡轮流量计的适用场合与量程范围
- 涡轮流量计由什么组成
- 涡轮流量计的工作原理
- 压力对涡轮流量计精度的影响
- 液体涡轮流量计使用常见问题
- 液体涡轮流量计的使用场合
- 液体涡轮流量计怎么接电
- 涡轮流量计的使用范围
- 涡轮流量计安装条件与环境要求
- 涡轮流量计安装在什么位置
- 液体涡轮流量计设置方法
- 气体涡轮流量计使用环境
- 气体涡轮流量计使用注意事项
- 气体涡轮流量计怎么清洗
- 气体涡轮流量计适用范围
- 气体涡轮流量计为什么要加油
- 气体涡轮流量计波动大解决办法
- 气体涡轮流量计安装距离要求
- 气体涡轮流量计安装注意事项
- 气体涡轮流量计应用范围
- 气体涡轮流量计常见故障有哪些
- 提高气体涡轮流量计精度的方法
- 气体涡轮流量计精度等级